ISSN: 2167-0870
Journal of Clinical Trials
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Emerging Tools for Computer-Aided Diagnosis and Prognostication

Scott Ritter* and Kenneth B Margulies
Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania
Corresponding Author : Scott Ritter
Department of Medicine
Perelman School of Medicine
University of Pennsylvania, USA
Tel: (215) 573-2999
Fax: (215) 746-7415
Received February 21, 2014; Accepted February 22, 2014; Published February 24, 2014
Citation: Ritter S, Margulies KB (2014) Emerging Tools for Computer-Aided Diagnosis and Prognostication. J Clin Trials 4:e117. doi:10.4172/2167-0870.1000e117
Copyright: © 2014 Ritter S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Clinical Trials

Emerging Tools for Computer-aided Diagnosis and Prognostication
The ability to more accurately predict and prevent disease has the potential to transform clinical practice by improving response to specific treatment regimens and decreasing morbidity and mortality. Part of what limits the accuracy to which we can predict and prevent disease results from our limited understanding of the relationship between clinical presentation and disease progression [1].
Although vast amounts of data are collected at clinical presentation, ranging from macro-scale Magnetic Resonance Imaging (MRI) scans, to micro-scale pathology slides, to nano-scale proteins and genes, there are challenges associated with analyzing, combining, and correlating these data to make diagnostic, prognostic, and theranostic predictions [2-4]. Computerized image analysis and data integration methods have the potential to improve our understanding of the relationship between these heterogeneous multi-format, multi-scale data to better predict disease outcomes and treatment responses.
Computer-based Image Analysis
Advances in imaging hardware and computational processing have catalyzed the growth of digital imaging and computer-based image analysis in pathology. Digitization of entire glass slides (whole-slide imaging) has increased the amount of morphologic data that can be obtained from tissue [3]. Whole-slide imaging has also aided pathologists with automated field selection and has begun to allow pathologists to supplement steps in image analysis (i.e., feature extraction, feature selection, dimensionality reduction, and classification) with automated machine-learning algorithms to minimize subjectivity and augment quality assurance [3,5,6].
One such tool, developed, evaluated, and applied by Beck et al., is an unbiased image analysis system called C-Path [7]. C-Path has been used to identify feature sets in tissue microarrays to predict 5-year survival of patients with breast carcinoma. Using a machine-learning algorithm and thousands of morphologic descriptors, the C-Path prognostic model accurately predicted good and poor prognosis patients and identified clinically significant morphologic features, some of which were not previously recognizable using traditional quantitative pathology techniques. Although the molecular basis for the prognositically significant morphologic phenotypes has yet to be elucidated, and the effectiveness of computer-aided pathological interpretation has yet to be established on whole-slide images and tested on a diverse set of images, this approach shows great potential because it has predicted survival outcomes with a high degree of statistical significance and has the potential for further refinement. This example illustrates the potential for using automated, unbiased image analysis and machine-learning systems for producing standardized, objective, reproducible results that could eventually support clinical practice [8].
Heterogeneous Data Integration
Advances in computational processing have enabled quantitative integration of heterogeneous, multi-format, multi-scale dataparticularly imaging and genomic data [2,9-12].
In one of the first applications to combine imaging and nonimaging (protein expression) data, Lee and Madabhushi developed a Generalized Fusion Framework (GFF) to integrate the micro-scale morphological features obtained from digital histopathology slides with nano-scale protein expression measurements from mass spectrometry [13]. This GFF was created to observe whether quantitative integration of image-based signatures from digital histopathology slides with corresponding peptide measurements from mass spectrometry could be used to differentiate prostate cancer progressors with prostate cancer non-progressors. The challenge of integrating this multi-scale, multi-modal, multi-protocol data was overcome by combining the 3 data modalities (architectural histopathology features, morphological histopathology features, and m/z mass spectrometry features in 51, 100, and 570 dimensions, respectively) into a common low-dimensional meta-space projection with 3 dimensions using principal component analysis. This projection was then normalized, concatenated, and reduced a second time with principal component analysis to yield the low-dimensional integration product of the original high-dimensional data. Results reflected the suitability of using this GFF to integrate heterogeneous multi-format, multi-scale data for differentiating between patients with different disease profiles.
Later applications by Madabhushi et al., have explored additional methods for combining data modalities beyond principal component analysis (e.g., non-linear dimensionality reduction methods) and correlations between disease and markers in digital pathology [10], gene and protein expression [11], spectroscopy [12,14], ultrasound [15], and MRI [9,14,16].
Future Directions
While computer-based image analysis, heterogeneous data integration methods, and computer-aided prognostics are currently demonstrating their efficacy in the pre-operative or pre-therapeutic cancer population, they will inevitably have applicability in other fields.
In cardiovascular medicine, for instance, large amounts of macro-scale heart morphology and phenotype data (from MRI, hemodynamics, and echocardiograms), micro-scale whole-slide imaging data (from biopsies, donors, explants, and device placements), and nano-scale gene expression and transcriptome data are being collected at several institutions for clinical and research purposes [17]. Because typical cardiac pathology scoring systems are rather rudimentary, such as the Dallas criteria for myocarditis [18] and the International Society for Heart and Lung Transplantation scoring of rejection in cardiac allografts [19], there is rich opportunity for computer-aided interpretation and multi-modality integration to provide new insights into myocardial disease mechanisms, severity and prognosis. As with the oncology applications described above, a key step in these myocardial applications will be correlation with clinical outcomes and current clinical reference standards. As heterogeneous data integration tools become increasingly sophisticated and validated, they could provide a rational basis for the identification of interpatient distinctions necessary for greater individualization of therapeutics.
Computers are becoming increasingly ready to supplement and enhance imaging (MRI, ultrasound), morphologic information (tissue), and molecular classification (whole-genome sequencing, expression profiling, proteomics, and metabolomics) with diagnostic, prognostic, and theragnostic predictions [8]. These computer-based tools for heterogeneous data integration have begun to demonstrate their effectiveness in large retrospective studies and will soon be ready for prospective, multi-institutional validation studies as the next step before adoption into clinical practice.
This work was supported by the Myocardial Applied Genomics Network (MAGNet) National Institutes of Health grant R01HL105993.
Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Disc Animal ethics
Disc Antifungals
Disc Antimicrobial Activity
Disc Antimicrobial Agents
Disc Antimicrobial Suceptibility
Disc Antimicrobials
Disc Basics of Medical Ethics
Disc Behavioral epidemiology
Disc Bioethics
Disc Bioethics and philosophy of science
Disc Cancer epidemiology
Disc Clinical Ethics
Disc Clinical Microbiologist
Disc Clinical Microbiology Case Reports
Disc Clinical Microbiology Guidelines
Disc Clinical Microbiology Research
Disc Clinical Microbiology Reviews
Disc Clinical Microbiology and Infection
Disc Clinical Practice Guidelines
Disc Clinical Research
Disc Clinical Trials
Disc Clinical Trials Data Management
Disc Clinical Trials Data Management Softwares
Disc Clinical Trials Europe
Disc Clinical Trials Japan
Disc Clinical Trials Management
Disc Clinical Trials USFDA
Disc Data Auditing Methodologies
Disc Death and dying
Disc Diabetes Protocol
Disc Diabetic Trials
Disc Disambiguation
Disc Drug Clinical Trials
Disc Economic epidemiology
Disc Emerging Infection
Disc Environmental epidemiology
Disc Epidemiology and Biostatistics
Disc Epidemiology and community health
Disc Epidemiology and disease control
Disc Epidemiology and infection
Disc Epidemiology of tuberculosis
Disc Ethical Issues in Health Care Research
Disc Ethical Research with Children
Disc Ethics in Medical Research
Disc Ethics in Nursing
Disc Ethics in disaster medicine
Disc Ethics in relation to abortion
Disc Etiology
Disc General ethics
Disc Genetic epidemiology
Disc Global Health
Disc HIV Clinical Trials
Disc HIV surveillance
Disc Health Ethics
Disc Hepatitis C
Disc Human Experimentation
Disc Intestinal epidemiology
Disc Manual of Clinical Microbiology
Disc Molecular Pathogenesis
Disc Neuro Ethics
Disc New Infections
Disc New Microbes
Disc Nosocomial Infection
Disc Nutrition epidemiology
Disc Opportunistic Infections
Disc Oral/dental epidemiology
Disc Paid Research Studies Market Analysis
Disc Papillomavirus
Disc Pediatric epidemiology
Disc Pilot Studies
Disc Preclinical Trails
Disc Primary care epidemiology
Disc Protocol
Disc Psychiatric Studies
Disc Public ethics
Disc Randomized Controlled Trials
Disc Rehabilitation Protocols
Disc Renal epidemiology
Disc Reproductive Epidemiology
Disc STD
Disc Staphylococcal Infections
Disc Trends in maternal mortality
Disc Veterinary epidemiology
Recommended Journals
Disc Clinical Microbiology: Open Access
Disc Epidemiology: Open Access
Disc Journal of Clinical Research & Bioethics
  View More»
Recommended Conferences
Disc Neurorehabilitation Conference
July 21-22, 2016 Brisbane, Australia
Disc 6th Pharmacovigilance Congress
August 1-3, 2016 Toronto, Canada
Disc 3rd Congress on Pharmacology
August 8-10, 2016 Birmingham, UK
Disc 2nd Clinical Trails Conference
Aug 22-24, 2016 Philadelphia, USA

7th Neurologists Meeting on Neurology and Neurosurgery
August 22-24 2016 Vienna, Austria

Disc 7th Pharmacovigilance and Clinical Trials Conference
Sept 19-21, 2016 Vienna, Austria
Disc  5th Alzheimer’s disease and Dementia Conference
September 29-October 01, 2016 London, UK
View More»
Article Tools
Disc Export citation
Disc Share/Blog this article
Article usage
  Total views: 11187
  [From(publication date):
May-2014 - Jul 01, 2016]
  Breakdown by view type
  HTML page views : 7448
  PDF downloads :3739

Post your comment

captcha   Reload  Can't read the image? click here to refresh

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
OMICS International Conferences 2016-17
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Materials Science Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version