alexa “Smart Dust” and Internet of Things (IoT): Progress and Challenges | Open Access Journals
ISSN: 2469-410X
Journal of Lasers, Optics & Photonics
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

“Smart Dust” & Internet of Things (IoT): Progress & Challenges

Devendra K Sadana*, Ning Li, Stephen W Bedell and Ghavam S Shahidi

TJ Watson Research Center, Yorktown Heights, NY, USA

*Corresponding Author:
Devendra K Sadana
TJ Watson Research Center
Yorktown Heights, NY 10598, USA
Tel: 914-945-3000
E-mail: dksadana@us.ibm.com

Received Date: April 17, 2017; Accepted Date: June 28, 2017; Published Date: June 30, 2017

Citation: Sadana DK, Li N, Bedell SW, Shahidi GS (2017) “Smart Dust” & Internet of Things (IoT): Progress & Challenges. J Laser Opt Photonics 4: 160. doi: 10.4172/2469-410X.1000160

Copyright: © 2017 Sadana DK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Lasers, Optics & Photonics

The breath taking progress in CMOS scaling over last five decades has made it possible to shrink complex digital integrated circuits (ICs), such as a microprocessor into dimensions that are approaching a dust particle (<1 mm). For example, the latest 10 nm CMOS product is expected to have ~ 100 million transistors/mm2 (1). This makes fabrication of highly advanced smart dust equipped with a low-power (μW) micro-processor a reality and at a cost of less than a dime! Such unimaginable cost reduction is achievable because a 300 mm Si wafer can easily accommodate over 100,000 advanced ICs on a foot print of <0.8 mm × 0. 8 mm. This allows the recent emergence of Internet of Things (IoT) to be expanded using the “smart dust”. Continued proliferation of IoT is expected to exploit advances in smart dust and low-power wireless communication technologies in conjunction with progress in data security. The impact of IoT in monitoring and controlling various environments, such as agricultural fields, medical, healthcare, manufacturing plants, transportation systems and sending continuous streams of accurate and real-time data can be truly transformational (Figures 1 and 2).

lasers-optics-photonics-billions

Figure 1: IoT to connect billions of devices.

lasers-optics-photonics-trillion

Figure 2: IoT to create trillion dollar market.

The market potential of IoT is phenomenal as shown in Figure 1. It is expected that 10s of billions of devices will be connected for IoT related applications within next 3-5 years. Even more impressive will be the impact of IoT on transactional business as a whole. There are several projections from very respectable sources (IDC, CISCO, Goldman Sachs, McKinsey) which indicate that the overall market for IoT will grow at a 12.5% CAGR from over a $1 trillion in 2013 to several trillions by 2020 (Figure 2).

One key challenge, however, for IoT technology is the security of the transferred and received data, and its authentication. This is the hot topic of IoT research today. The most sought after implementation of data security aims at incorporating encrypted authentication and security software in the IoT device itself. In addition to security challenge, the ubiquity of smart dust or IoT in our daily lives will rely on breakthroughs in wireless communication and powering of ICs at ultra-low power (in the μW range). There are two main technologies for wireless communication: (i) radio frequency (RF) based, and (ii) a light source based. In this editorial we discuss pros and cons of both of these communication approaches.

RF Communication

RF transceivers are attractive for IoT because these do not require a direct line of sight for communication unlike their counterpart optical transceivers. However, RF circuits are typically larger than those which are optics based and operate at power levels in the multi-milliwatt range with a relatively large foot print (a cm or greater). Connectivity among large numbers of smart dust for IoT application by RF may further require additional circuitry for time, frequency or code-division multiplexing which will lead to even higher power consumption. Since the typical size of a RF antenna is relatively large (should be at least be a good fraction of the carrier wavelength), use of very short wavelengths/ high frequencies (75-100 GHz) may be compatible with the smart dust dimension. However, in this frequency regime, RF communication will consume higher power. Furthermore, a smaller antenna will reduce both the RF communication sensitivity as well as its energy efficiency.

Optical Communication

Optical interconnects are becoming indispensable in state-ofthe- art data centers for providing high band-width data transfer (10s of Gb/s) between and within servers at lower power than electrical connections for distances longer than a few centimetres. The optical transmitter and receiver technologies developed for data centers can also benefit the development of optical communication for smart dust devices. In particular, connectivity among a large body of tiny (<1 mm) smart dust or IoT devices distributed in free space via ulta low-power optical communication can be a game changer.

Compared to RF devices, semiconductor lasers, LEDs, and detectors require a relatively small foot print (<1 mm) to transfer and detect optical signals and are more amenable to low-power operation (<1 mW). In optical communication, 1 GHz frequency can be easily obtained from a sub-millimeter aperture, whereas RF communication may require several inches long antenna to produce collimation for a 1 GHz radio frequency signal. Furthermore, optical transceivers require relatively simple baseband analog and digital circuitry. The short wavelength (400-800 nm) laser makes a sub millimeter-scale device capable of emitting data via a narrow beam at the μW power level. LEDs can be made much smaller [1-3]. Also, a compact imaging receiver may be sufficient to decode simultaneous transmission from a large number of IoT devices distributed at different locations. Despite its low power and small foot print requirements, optical communication in free-space has two major challenges to overcome: (i) line of sight communication, and (ii) narrow beams for accurate pointing. Development of clever technologies and algorithms are required for smart dust/IoT applications to live up to their true potential to impact many aspects of our lives.

Energy Harvesting

Successful implementation of smart dust/IoT technologies requires autonomous, on-board energy harvesting. The most effective method for energy harvesting is based on solar cells, especially if smart dust/IoT devices are distributed in an outdoor environment [4]. These cells can be engineered to generate requisite power (μW to mW) on a target foot print by using high efficiency solar cells based direct band gap III-Vs. If an application requires smart dust/IoT devices to remain in dark or in low-light environment, power can be generated by shining light on the solar cell by an external light source of an appropriate wavelength.

Storage of the energy generated by a solar cell attached to the smart dust/IoT devices requires an efficient micro-battery. Achieving high storage capacity, e.g., 1 mAh, in a foot print of <1 mm × 1 mm for low-cost IoT devices is extremely challenging and has been the subject of active research. The front up approach for energy storage currently focuses on the Li-ion based solid state battery with high volumetric energy density [5]. This topic is rather broad in scope and will be discussed in a future editorial.

Summary

Spectacular progress has been made in the last decade to establish infrastructure for design and fabrication of IoT/smart devices addressing a multitude of applications including agricultural, medical, manufacturing, and pharmaceutical and many others. The economic impact of IoT once fully exploited for the real-time acquisition and analysis of data will be in trillions of dollars. However, there are two key challenges yet to be overcome: (i) developing a high energy density micro-battery that is capable of providing sufficient power on a few hundred microns foot print to enable various communication protocols for duration of several hours, and (ii) an efficient, low power optical and/or RF communication system that can overcome the lineof- sight limitation.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

  • 6th International Conference on Photonics
    July 31- August 01, 2017 Milan, Italy
  • 7th International Conference on Laser Optics
    July 31- August 02, 2017 Milan,Italy

Article Usage

  • Total views: 46
  • [From(publication date):
    June-2017 - Jul 21, 2017]
  • Breakdown by view type
  • HTML page views : 29
  • PDF downloads :17
 
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version