The Future of Azoospermic Patients: In vitro Spermatogenesis

Azantee YAW1* and Lokman MI2

1Department of Obstetrics & Gynaecology (O&G), Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
2Department of Basic Medical Science Nursing (BMSN), Kulliyyah of Nursing, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia

Introduction

Male infertility becomes a worldwide problem and contributed to 50% of infertility cases [1]. The main cause of male infertility is spermatogenesis failure such as oligozoospermia and azoospermia. Azoospermia is defined as absence of spermatozoa from semen and it is present in 15% of infertile [2]. It is a major concern due to inability to have their own offspring. Azoospermia is related to incomplete spermatogenesis process which related to genetic disorder, hormonal problem or testicular failure [3]. Recreating human spermatogenesis outside of its original environment is a scientific curiosity in andrology world and a quest for male fertility treatment. It has a huge impact on our understanding on physiology and pathway of genetic in male reproduction using a well-characterized model of human spermatogenesis. Animal studies have provided us the knowledge of gonadogenesis, spermatogenesis and steroidogenesis based on the histology, immunohistochemistry, hormonal assays and phenotype of gene alterations [4]. In vitro spermatogenesis in azoospermic patients has long been attempted, however, it remains challenging due to limitation of culture system. In this review, we would address the limitation studies of the in vitro human spermatogenesis in developing sperm for future clinical application.

In vivo and In vitro Spermatogenesis

Spermatogenesis is a complex process that involves proliferation and differentiation of spermatogonia cells into mature motile spermatozoa within the seminiferous tubules in male testis. Basically, there are three stages of spermatogenesis: formation and migration of Primordial Germ Cells (PGC), mitotic division which increase the germ cell numbers and meiotic reduction in chromosome content. This followed by the spermiogenesis which involves the differentiation and maturation of sperm cell involving nuclear shaping and condensation, formation of acrosome, rearrangement of cell organelles, shredding of cytoplasm and formation of flagella [5]. In adult human testis, this process takes about 65-75 days [6]. The continuation of spermatogenesis depends on the Spermatogonial Stem Cells (SSCs) which has the ability to self-renewal and differentiation [7]. In vitro differentiation of SSCs is a difficult technique due to microenvironmental niche in the testis which requires structural support from the Sertoli cells. The Sertoli cells plays an important roles as a blood-testis barrier, secretes factors to maintain and control spermatogenesis and acts as phagocytosis in clearance of apoptotic germ cells (generation of fertile sperm).

Spermatogenesis process needs both endocrine and paracrine/autocrine mechanisms [8]. The endocrine stimulation in human spermatogenesis involves the Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH) and testosterone hormone. FSH stimulates the DNA synthesis in the mitotic and meiotic division where as LH will bind to the Leydig cells in the seminiferous tubules to produce testosterone hormone which also impacts on the mitosis and the successful completion of meiosis [8]. The normal level of FSH in men is between 5-15 IU/L and testosterone level is 270 to 1,070 nanograms. Paracrine mechanism plays an important role in the regulation of spermatogenesis by maintaining and coordinating the testicular cells’ normal activity. The paracrine process includes Interleukin (IL), Tumor Necrosis Factor (TNF), Stem Cell Factor (SCF) etc. [9]. These paracrine mechanisms have shown to affect both the germ cell proliferation and the secretion and function of the Leydig and Sertoli cells.

In vivo studies on Spermatogonial Stem Cells (SSCs) provide an understanding of the spermatogenesis and endocrine regulation process. The successful transplantation of SSCs population for continuation of spermatogenesis process in mice testis donor was demonstrated in 1994 by Brinster and Zimmermen. This theoretical model has successfully proliferated, differentiated and restored spermatogenesis using both fresh and cryopreserved mouse SSCs [10] and has expanded into other animals. However, only rats cloutier et al.; Brinster et al. [11,12] and hamsters [13] were able to complete spermatogenesis in recipient mice tests. The transplantation of SSCs model has become a useful tool of understanding the testicular stem cells and germ cell differentiation [14]. There would be a potential to clinically apply SSCs transplantation in human especially in male treated cancer patients. However, it remains unknown if the recipient will react in the similar process of the donor SSCs and there could be a risk of malignancy cells. Study by Sadri-Ardekani et al. [15] shown the xenotransplantation of human testicular cells of leukemic patients resulted successful propagation of Spermatogonial stem cells in recipient rats but it can be risk for tumor cells (Sadri-Ardekani et al.) [15]. A few studies on testis xenograft transplantation model has done from fetal or pre-pubertal cancer patients’ testicular tissue onto immune-deficient nude mice and demonstrated survival of spermatogonia and few spermatocytes at the pachyten stage and spermatid-like cells for more than 135 days (Wyns et al. and Yu et al.) [16,17]. Human xenograft models have great promising results however, further study must be done to determine the risk of toxicity and safety use for clinical application.

Most of the in vitro studies tried to initiate and colonize the SSCs based on the microenvironment or niche in the seminiferous tubules. Variety species have been used for in vitro spermatogenesis using testicular tissues however, mostly gonocyte development and progression arrest at meiotic stage (Lo and Domes) [4]. Growth factors such as Growth Differentiation Factor (GDF), Basic Fibroblast Growth Factor (BFGF) and Leukemia Inhibitory Factor (LIF) have promoted the proliferation of mouse spermatogonial stem cell survival [18]. Study by Feng et al. shown Stem Cell Factor (SCF) are capable of undergoing differentiation into haploid spermatids from spermatogonia in mice (Feng et al.) [19]. The use of Retinoic Acid (RA) in in vitro culture
shown SSCs can be differentiated into early meiotic germ cells (Song and Wilkinson) [20]. Testicular cells co-culture with Sertoli cells have shown positive differentiation into round spermatid (Virgier et al.) [21]. Minaee Zanganeh et al. used co-cultured with Sertoli cells and in presence of hormones and vitamins in mouse SSCs resulted differentiation into spermatid (Minaee Zanganeh et al.) [22]. However, study by Iwanami et al. showed that type A spermatogonia of immature rats differentiate into round spermatid-like cells in co-cultured with Sertoli cells had generated abnormal gene expression patterns and micro-insenmination did not result in offspring (Iwanami et al.) [23]. In the zebra fish (Danio rerio) in vitro co-cultured with Sertoli cells have shown complete process of spermatogenesis (Sakai) [24]. Xie et al. used buffaloes (Bubalus bubalis) testicular cells co-cultured with Sertoli cells resulted spermatogonia differentiation into spermatids (Xie et al.) [25]. A three-dimensional (3D) environment of extracellular matrix components such as calcium alginate, matrigel, soft agar, methylcellulose or collagen might reflect the testicular environment compared to two-dimensional plastic surface in a culture dish or might provide options for re-aggregation of more complex tissue. Soft agar culture on mice have successfully differentiated into spermatozoa from germ cells (Elhija et al. and Stukenborg et al.) [26,27]. The use of collagen in this technique culture resulted differentiation of rat germ cells into post-meiotic stages (Lee et al.) [28]. Animal studies provide a platform to further study on optimal components to achieve in vitro spermatogenesis such as media conditions, culture temperatures, hormone concentration and requirement fraction of non-gonadal cells.

As for human studies, the development of spermatogonia from spermatogonial stem cells have not been successfully achieved. There are a few in vitro studies stated the differentiation of the spermatogonia cells until spermatid stage using various volume of rFSH and testosterone hormone supplement (Dong et al., Sousa et al. and Tesarik et al.) [29-31]. In vitro culture with various growth factors such as epidermal growth factor (EGF), glial cell line-derived neurotrophic factor (GDNF), BFGF and LIF shown induced of pluripotent cells derived from SSCs testicular tissues (32). Study by Piravar and colleagues shown survival of SSCs using EGF; Leukemia Inhibitory Factor (LIF) and GDNF in long-term culture (Piravar et al. and Goharbakhsh et al.) [33,34]. The use of FSH and testosterone hormones in in vitro culture resulted differentiation of male haploid cells from germ stem cell-like cells (Lee et al.) [28]. Co-culture with feeder cells such as Vero cells from monkey or Sertoli cells has positive development in human SSCs to provide a continual supply of differentiating spermatogonia. In the rat testis, six generations of SSCs to provide a continual supply of differentiating spermatogonia. The oxidative stress has become possible role in the pathogenesis of male infertility. Antioxidants such as vitamin E and vitamin C in in vitro or in vivo studies have shown may help maintain the balance between ROS production, reduced in sperm apoptosis and sperm DNA fragmentation and thus could improve the sperm quality [50]. So far there is no study in vitro using zinc or antioxidants for the development of human sperm. This could be a useful elements to further study for potential development of sperm in vitro spermatogenesis.

Molecular Marker in Spermatogenesis

Spermatogenesis has different genes that express stages of spermatogonial stem cells. The spermatogenesis is maintained by the ability of SSCs to provide a continual supply of differentiating spermatogonia. In the early of spermatogenesis, rodent and human have different categories of spermatogonial stem cells. In the rat testis, six generations of differentiating spermatogonia are observed: A1, A2, A3, A4, intermediate (In), and B spermatogonia [51] while in human SSCs divided into A int and A out and B spermatogonia [52]. The premeiotic molecular markers in human and rodents are quite similar such as Oct4 (POUSF1), a6-integrin (CD49f), GPR125, PLZF, GFR-a1, Thy1 (CD90), CD9 and β1-integrin (CD29). NGN3, RET, CDH1 (CD34) and Stra8 are other gene markers present in rodent SSCs. As for human, C-KIT, CD133, MAGE-A4 (melanoma antigen family A4), CHEK2, NSE (neurone-specific endolase), alkaline phosphatase and TSPY (testis specific protein Y-linked 1) are the other gene markers for SSCs [29,53-55]. In the meiotic and post-meiotic phases, human and rodents have different of gene markers. LDH and Crem-1 are markers for meiotic in rodents [26] whereas TH2B (human testis specific histone) and SCP3(synaptonemal complex protein 3) are meiotic markers for human [32]. In the post-meiotic phase, Protamine, Acrosin and SP-10 (testis specific protein Y-linked 1) are the other gene markers for SSCs. As for human, Transition Protein 1 (TP1) is the gene marker for post-meiotic [32]. The pre-meiotic, meiotic and post-meiotic gene markers for human and rodents are summarized in Table 2.
Method of culture | Studies from human samples | Studies from animals
--- | --- | ---
Testicular culture with growth factors such as GDF, BFGF, EGF, GDNF, LIF, SCF or RA for survival of cell culture | Lim et al., [32] | Pluripotent cells induced from SSCs | Kanatsu-Shinohara et al., [18] | Survival of SSCs in long-term culture | Survival of mouse spermatogonial stem cells | Differentiation into haploid spermatids from spermatogenic SSCs can be differentiated into early meiotic germ cells
Testicular culture with reproductive hormones such as rFSH and testosterone for differentiation of male germ cells | Dong et al., 2006, Sousa et al., [30], Tesarik et al., [31] Lee et al., [28] | Differentiation of the spermatogonia cells until spermatid stage | Minae Zanganeh et al., 2013 | Differentiation into haploid male germ cells | SSCs differentiation into spermatid
Three-dimentional culture using collagen or soft agar | Lee et al., [37] Lee et al., 2006a | Differentiation of spermatocytes into spermatids in non-obstructive azoospermic patients. Expression of genes specific for post meiotic haploid state in non-obstructive azoospermic patients. | Lee et al., [28] Stukenborg et al., [27] Elhija et al., [26] | Meiosis and differentiation of rat germ cells into post-meiotic stages Differentiation and meiosis of spermatogonia into morphologically mature spermatooza in mice. Differentiation and meiosis of spermatogonia into morphologically mature spermatooza in mice. | Meiosis and differentiation of rat germ cells into post-meiotic stages Differentiation and meiosis of spermatogonia into morphologically mature spermatooza in mice. Differentiation and meiosis of spermatogonia into morphologically mature spermatooza in mice.

| Table 1: Overview in vitro spermatogenesis between human and animals. |

<table>
<thead>
<tr>
<th>Phases of spermatogenesis</th>
<th>Human markers</th>
<th>Rodent markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-meiotic</td>
<td>OCT4, GFRA1, C-Kit, CD9, ITGA6, ITGB1, GPR125, THY-1, C-KIT, CD133, MAGE-A4, CHEK2, NSE, alkaline phosphatase and TSPY</td>
<td>OCT4, GFRA1, C-Kit, CD9, ITGA6, ITGB1, GPR125, THY-1, NGN3, RET, CDH1 (CD324) and Stra8</td>
</tr>
<tr>
<td>Meiotic</td>
<td>TH2B, SCP3</td>
<td>LDH, Crem1</td>
</tr>
<tr>
<td>Post-meiotic</td>
<td>TP1</td>
<td>Protamine, Acrosin and SP-10</td>
</tr>
</tbody>
</table>

| Table 2: A comparison of markers for human and rodent in pre-meiotic, meiotic and post-meiotic spermatogenesis. |

**Ethical Issue**

In vitro spermatogenesis would be useful for chemical screens, identify the causes of infertility, the critical pathways of spermatogenesis and the imprinting disorder that would be inherited to the offspring. Ethical issue should be concern in utilizing in vitro spermatogenesis before proceed to clinical trial such as the source of from animal cells or other human cells into recipient human cells or the use of adult stem cells or embryonic stem cells. There could be a risk of malignancy cells transplantation or abnormalities in genetic modification from these studies.
[4,56-58]. The potential development of spermatозoa in vitro culture will results in passing own genetic material to his offspring. However, the status of the haploid produce from the in vitro spermatogenesis should explore further to maintain the normality of the sperm.

Conclusion
There is a potential to develop spermatозoa in vitro spermatogenesis in treating male infertility. However, this research needs to explore further and improve the methodology needs to generate the normal haploid sperm before use in clinical trial.

References


