ISSN: 2169-0316
Industrial Engineering & Management
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
 
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business
 

Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide

Trivedi MK, Nayak G, Patil S*, Tallapragada RM and Latiyal O
Trivedi Global Inc,10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
Corresponding Author : Patil S
Trivedi Global Inc 10624 S
Eastern Avenue Suite A-969
Henderson NV 89052, USA
Tel: +1 602-531-5400
E-mail: publication@trivedieffect.com
Received: June 02, 2015 Accepted: July 15, 2015 Published: July 17, 2015
Citation: Trivedi MK, Nayak G, Patil S, Tallapragada RM, Latiyal O (2015) Impact of Biofield Treatment on Physical, Structural and Spectral Properties of Antimony Sulfide. Ind Eng Manage 4:165. doi:10.4172/2169-0316.1000165
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google

Visit for more related articles at Industrial Engineering & Management

Abstract

Antimony sulfide (Sb2S3) has gained extensive attention in solar cells due to their potential as a low-cost and earth abundant absorber material. In solar cell absorber, the optoelectrical properties such as energy band gap and absorption coefficient of Sb2S3 play an important role, which have strong relationships with their crystal structure, lattice parameter and crystallite size. Hence in the present investigation, Sb2S3 powder samples were exposed to biofield treatment, and further its physical, structural and spectral properties are investigated. The particle size analysis showed larger particle size and surface area after treatment. X-ray diffraction (XRD) analysis revealed polycrystalline orthorhombic structure with superior crystallinity in treated Sb2S3 along with significant changes in the lattice parameters, which led to changes in unit cell volume and density. XRD data analysis indicates that crystallite size was increased by around 150% in treated sample. In FT-IR spectra, strong absorption band was observed at 400-700cm-1, which confirms the presence of Sb2S3. Further, the absorption peak intensity in IR spectra was significantly reduced after treatment that was probably due to change in metal sulphur dipolar interaction.

Keywords
Biofield treatment; Antimony sulfide; X-ray diffraction; FT-IR; Particle size; Surface area; Scanning electron microscopy
Introduction
Antimony Sulfide (Sb2S3) is a semiconductor ceramics belonging to V-VI group of periodic table, which have high thermo-electric power and photosensitivity. Sb2S3 has a wide range of commercial applications in microwave devices, optoelectronic devices and solar cell absorber [1-4]. Sb2S3 fulfils the optoelectronic properties to obtain an electronic band gap in the near-infrared region and the visible region, depending on its crystalline or amorphous nature [5]. Sb2S3 is an important photoconductive semiconductor in the polycrystalline form as orthorhombic crystal structure. The optoelectrical properties of Sb2S3 such as charge carrier transport mechanism, conduction, photoelectric properties makes it a promising material in solar energy industries as a light absorbing material. For solar cell absorber applications, the absorption coefficient and the energy band gap of Sb2S3 plays a crucial role. It is already reported [6,7] that higher absorption coefficient and lower energy band gap improves the performance of an absorber in the solar cell. Furthermore, the energy band gap in Sb2S3 is inversely proportional to its crystallinity [6] and the absorption coefficient of Sb2S3 is directly proportional to its crystallite size [7].
Recently, Sb2S3 powders have been synthesized by conventional methods such as hydrothermal treatment, solvo thermal reaction, sonochemical method and high energy milling [5]. The high energy milling has been frequently used by various researchers to produce nanocrystalline Sb2S3 [5]. In the milling process, energy was normally provided in the form of mechanical or chemical means. Additionally, in conventional milling process many parameters need to be controlled for cost reduction such as power, ball diameter, contamination, time, etc. Therefore, high energy milling through biofield treatment could be a cost effective approach which can effectively modulate the crystalline and physical properties.
Researchers all around the world have confirmed that the solid matter consist of energy and once this energy vibrates at a certain frequency, that gives physical, atomic and structural properties to the matter such as shape, size, texture, crystal structure, atomic weight, etc. Similarly, the human body also consists of vibratory energy particles like neutrons, protons, and electrons, and when these charged particles vibrate at certain frequency, an electrical impulse is generated. Consequently varying of these electrical impulses with time, cause generation of magnetic field as per Ampere-Maxwell-Law, which cumulatively form electromagnetic field [8]. Hence, the electromagnetic field generated from the human body is known as biofield. This biofield often vary from person to person based on their physiology and internal dynamic processes. Mr. Trivedi is known for his unique physiology and biofield, through which he has already caused changes in the atomic and physical characteristics in various fields such as material science [9-16], agriculture [17-19], microbiology [20-22], and biotechnology [23,24]. Further, in the field of material science, the said biofield has significantly changed the lattice parameter, surface area, crystallite size and particle size in metals [9], carbon allotropes [11], and ceramics [13,15].
In this paper, we report the impact of Biofield on Sb2S3 powder with respect to its structural, spectral and physical characteristics.
Experimental
Antimony sulfide (Sb2S3) powder used in the present investigation was purchased from Sigma-Aldrich, USA. Procured Sb2S3 powder was distributed into five equal samples. One sample was considered as control, and other four samples were exposed to Mr. Trivedi’s biofield, referred herein as treated samples (T1, T2, T3, and T4). All samples were characterized by X-ray Diffraction, Scanning Electron Microscopy (SEM), Laser particle size analyzer, surface area analyzer (BET) and Fourier transform infrared spectroscopy (FT-IR) analysis.
Particle size analysis
Average particle size distribution and particle size were measured by Laser particle size analyzer SYMPATEC HELOS-BF, which had the detection range of 0.1-875 μm.
Surface area analysis
The surface area was measured by using surface area analyzer, SMART SORB 90 Brunauer-Emmett-Teller (BET) with a detection range of 0.1-1000 m2/g.
X-ray diffraction
The atomic and structural level analysis was carried out using X-ray Diffraction (XRD), Phillips, Holland PW 1710. The copper anode with Nickel filter was used in this XRD instrument. The wavelength of radiation used in the instrument was 1.54056 Å and data provided by XRD was in the form of a chart of 2θ vs. intensity along with a table containing peak intensity counts, d value (Å), peak width (θ0), relative Intensity (%). For the calculation of lattice parameter and unit cell volume PowderX software was used.
The crystallite size (L) was calculated using the formula: L=kλ/ (bCosθ)
where k is the equipment constant (=0.94), and λ is the wavelength of radiation used. The molecular weight of a molecule is the sum of the atomic weight of all atoms, and the atomic weight is the sum of the total weight of protons, neutrons and electrons present in an atom. As number of molecules in a unit cell is fixed, so the weight of the unit cell was computed as the number of molecules present in a unit cell multiplied by the molecular weight of the molecules. The density was calculated as the weight of the unit cell divided by the volume of the unit cell. The percent change in lattice parameter, “a” was calculated as [(at-ac)/ac] × 100 where ac and at are lattice parameter of control and treated powder samples respectively. The percentage change in all other parameters such as lattice parameter “b”, unit cell volume, density, crystallite size were calculated in a similar manner.
Infrared spectroscopy
The IR spectra of samples were recorded by using Perkin Elmer, USA Fourier Transform Infrared (FT-IR) Spectrometer with frequency range of 300-4000/cm.
Scanning electron microscopy (SEM)
For surface morphology observation, Scanning electron microscopy (SEM), the JEOL JSM-6360 instrument was used.
Results and Discussion
Physical properties
The particle size and surface area analysis of control and treated Sb2S3 sample T1, T2, and T3 is shown in Figure 1. The treated sample T1, T2, and T3 were evaluated on 12th, 86th and 94th day after treatment respectively. The particle size analysis results showed that the average particle size d50 was decreased in treated Sb2S3 samples by 2%, 9.7% and 8.5% as compared to control in T1, T2, and T3 respectively. Nevertheless, the particle size d99 (size below which 99% particles are present) was increased in T1 by 12% and decreased in sample T2 and T3. Contrarily, the specific surface area was increased by 31% in sample T1 and then reduced by 31% in sample T3 as compared to control sample after treatment, though it was not changed in sample T2. The decrease in particle size was probably due to the fracturing of medium size particles into fine particles by energy milling that led to increased surface area in T1. The reduction in particle size and surface area in sample T3 was contrary to the fact i.e. smaller the particle size, larger the surface area. Thus it was postulated that, possibly the fresh surfaces of the particles were generated due to fracturing and agglomeration process through high energy milling. In order to get more insights about change in particle size and surface area, the powders were characterized by X-ray diffraction.
Atomic and structural properties
The XRD diffractogram of Sb2S3 is presented in (Figures 2a-2e). The XRD patterns of Sb2S3 confirms the orthorhombic crystal structure in control and all treated Sb2S3 samples as per JCPDS Card number 06- 0474. From the XRD patterns, it was found that the peak intensity in treated sample T1 (Figure 2b) was increased along plane (200), (310) as compared to control (Figure 2a). Further the treated sample T2 also showed increased intensity (Figure 2c). This indicated that the crystallinity was enhanced in sample T1 and T2 that might be due to re-arrangement of the atoms in long range order through biofield. However the intensity of major peaks were not changed in sample T3 and T4 (Figures 2d and 2e).
Additionally, the crystal structure parameters were computed from the XRD patterns using PowderX software and analysis results are illustrated in Figures 3-6. It was observed that the lattice parameter “a” was increased from 11.28Å (control) to 11.45Å in T1 (Figure 3). Further, the results showed that on 71th day after treatment (T1), the lattice parameter “a” was increased significantly by 1.5% whereas lattice parameter “b” was decreased by 0.5% as compared to control. This causes the corresponding increase in volume by 0.63% that led to reduced density by -0.61% as compared to control (Figures 4-5). The lattice strain (change in lattice parameter) along “a” was positive and along “b” it was negative, which indicated that tensile stress was applied along “a” and compressive stress was applied along “b” during milling through biofield treatment, which further implies that the unit cell expanded along one side and compressed along another side. On 104th day after treatment (T2), no significant change was found in unit cell parameters. However, on 128th day (T3) unit cell parameter “a” was increased by 0.46% but parameter “b” was decreased by 0.37%, that led to no change in volume and density, since the volume increased through expansion of one side was compensated by compression in another side “b”. This suggest that stresses may have been applied on unit cell along both sides, “a” and “b”; and direction and magnitude of these stresses varied with time after biofield treatment. Thus, the varying stresses on unit cell led to change the corresponding volume and density in treated samples. Moreover on 144th day after treatment (T4), no significant change was found in unit cell parameters. Further, the molecular weight changes were exactly opposite to the changes in the density as shown in Figure 6. This inverse relationship between molecular weight and density can be attributed to the change in proton to neutron ratio inside the nucleus. Furthermore the neutron to proton ratio can change if weak reversible nuclear level reaction occurs inside the nucleus. Thus, we presumed that biofield has transferred the energy in form of neutrinos that possibly cause this nuclear level reaction including proton-neutron to alter their ratio.
Additionally, the crystallite size was increased drastically by 150% in T1 with respect to control on 71th day after treatment (Figure 7). However, the crystallite size was increased in treated samples T2, T3 and T4 as well. This increased crystallite size was possibly due to coalescence of several grains, due to movement of crystallite boundaries. Nevertheless the movement of crystallite boundaries could be possible if a large amount of energy (at least one-third of melting point) was supplied to the crystallite boundaries (similar to grain growth during sintering of powders at high temperature). Hence, it is hypothesized that energy might have been supplied to the Sb2S3 either directly through the biofield treatment or via the weak reversible nuclear reactions.
FT-IR spectroscopy
The FT-IR spectrum of control and treated Sb2S3 powder is shown in Figures 8a and 8b. The absorption peaks that were observed at 472, 518, 640/cm in control and 472, 516, 640/cm in T1 sample and 472, 516 ,644/cm in T2 sample were attributed to the presence of orthorhombic crystal structure of Sb2S3 [25,26]. However, no significant change was found in absorption peak positions in the fingerprint region of 400– 700/cm in treated samples. Nevertheless the absorption band intensity was significantly reduced at 1112/cm in both treated samples, T1 and T2, which may be due to change in inter-atomic interaction [26]. The broad absorption bands in the region of 4000 to 2500/cm corresponds to the O–H stretch vibration peak due to the absorbed water.
Morphological studies
The surface morphology of Sb2S3 powder was studied using Scanning electron microscopy (SEM). The SEM micrographs of control and treated Sb2S3 powders are depicted in Figures 9a and 9b respectively. The SEM images of control Sb2S3 powder showed the irregular shape with internal agglomerated boundaries and sharp corners on the particles. Contrarily the treated Sb2S3 samples looks dense, homogenized with an increased agglomerated size. The increases in agglomerate size in treated samples have also supported the particle size results. The agglomerated Sb2S3 particles in treated samples were appeared as plate-like shape on all around the outer surfaces, which led to increase in surface area.
The structural, spectral and morphological studies revealed that the biofield treatment was acting on the structure, atoms, and their nuclei, which significantly affected the unit cell parameters, crystallite size, density, and molecular weight.
Conclusion
Herein we report the influence of biofield treatment on Sb2S3 powders, and its structural, spectral and physical properties are investigated. The significant increase as well as decrease in particle size and surface area was found in treated Sb2S3 powder, which may be due to agglomeration, fracturing and welding process caused by high energy milling induced through biofield treatment. The surface morphology study by SEM showed internal agglomerated boundaries and sharp angular particles in Sb2S3 powder that was probably due to internal friction and high energy impact during milling. Biofield has significantly altered the both lattice parameter: a and b simultaneously in orthorhombic crystal structure of Sb2S3 powders. This indicates that volumetric stress was probably generated through biofield treatment that resulted into changed density and volume. The significant changes in molecular weight asserted that biofield treatment acts at the atomic and nuclei level. The crystallite size was significantly increased by 150%, indicating the improved absorbance of Sb2S3 after treatment. Additionally, the crystallinity of Sb2S3 powder was also enhanced after biofield treatment that may have led to reduced gap in energy band. Therefore, the novel treated Sb2S3 powder can play an important role towards better solar cell absorber applications.
Acknowledgements
We thank Dr. Cheng Dong of NLSC, Institute of Physics, and Chinese academy of Sciences for supporting in using PowderX software for analyzing X-ray Diffraction results.
References


























 
Select your language of interest to view the total content in your interested language
 
Share This Article
   
 
   
 
Relevant Topics
Disc ACS Nano
Disc AI Algorithm
Disc Advanced Materials
Disc Aerodynamics
Disc Aeroelasticity
Disc Aerospace Dynamics
Disc Aerospace Engineering techniques
Disc Air Safety
Disc Aircraft
Disc Aircraft Flight Mechanics
Disc Android Technology
Disc Applied Arts
Disc Applied Engineering
Disc Applied Statistics
Disc Applied Theories on Machines
Disc Architect
Disc Architectural Designing
Disc Architectural Drawing
Disc Architectural Engineering
Disc Astrodynamics
Disc Automated Mining
Disc Automation
Disc Automation Devices
Disc Automobile Engineer
Disc Automotive Engineering
Disc Automotive Industry
Disc Aviation
Disc Avionics
Disc Bioengineering Application
Disc Biological Engineering
Disc Biomaterial Science
Disc Biomedical Equipment
Disc Biomedical Instrumentation
Disc Biomedical Services
Disc Biomedical science
Disc Biomimetics
Disc Bioprocessing
Disc Bioreactors
Disc Biosensor elements
Disc Biotechnology Engineering
Disc Bridges
Disc Brittle Materials
Disc Building design
Disc Buildings
Disc Cell Apoptosis
Disc Ceramics Engineering
Disc Chemistry
Disc Cloud
Disc Cognitive Systems Engineering
Disc Cold Formed Steel
Disc Color science
Disc Commercialization of New Techniques
Disc Composite Materials
Disc Computation theory
Disc Computational Neuroscience
Disc Computer Hardware
Disc Computer Simulation
Disc Concrete
Disc Conditioning Monitoring
Disc Construction
Disc Construction Engineering
Disc Construction Estimating Software
Disc Control System
Disc Controllers
Disc Cryptography
Disc Design and Microfabrication
Disc Development Process
Disc Diesel Engine
Disc Digital Image Processing
Disc Dyes
Disc Dynamic Information
Disc Dynamical System
Disc Earthquake Engineering
Disc Earthquake Resistance
Disc Electronic Material Development
Disc Engine
Disc Engine Performance
Disc Engineering Design
Disc Engineering Drawing
Disc External Force
Disc Fabric Formwork
Disc Fashion Design
Disc Fashion Technology
Disc Fermentation Science
Disc Fiber
Disc Fiber Engineering
Disc Fiber Innovation
Disc Fibrous Materials
Disc Flight Dynamics
Disc Fluid Bodies
Disc Flying Wheel
Disc Fuel Economy
Disc Fuzzy Logic
Disc Gene Expressions
Disc Genetics
Disc Germ cell tumours
Disc Global optimization
Disc Health care management
Disc Helmet
Disc Human-Machine-Interfaces
Disc Hydraulic Engineering
Disc IT Management
Disc Ignititon System
Disc Image Recognition
Disc Industrial Crystallization
Disc Industrial Engineering
Disc Industrial Robotics
Disc Information Systems
Disc Information Technology
Disc Information Visualization
Disc Intelligent Robotics
Disc Interior Design
Disc Interior Designing
Disc Internet Communication Technology
Disc Internet computing
Disc Landscape Architecture
Disc Logistics
Disc Machine
Disc Machines
Disc Management Cybernetics
Disc Manufacturing system
Disc Material Sciences
Disc Materials Engineering
Disc Materials Management
Disc Mathematical Model
Disc Mathematical optimization
Disc Mechanical Properties
Disc Mechanical Systems
Disc Mechanism
Disc Mechatronics
Disc Mechatronics and Robotics
Disc Medical Device
Disc Medical Robotics
Disc Medical Textile
Disc Metallic Materials (Ferrous & Nonferrous)
Disc Mobile Device
Disc Mobile Repots
Disc Modeling and Simulation
Disc Modular Architecture
Disc Molecular Electronics
Disc Molecular and Medicine science
Disc Nano Composites
Disc Nano Materials
Disc Nano Particles
Disc Nano Structures
Disc Network
Disc Neural Networks
Disc Neurorobotics
Disc Nonlinear Dynamics
Disc Operations Research
Disc Parallel Processing
Disc Polymer Sciences
Disc Polymer Structure
Disc Polymeric Materials
Disc Porous Materials
Disc Power System
Disc Process Engineering
Disc Product Quality
Disc Production and Operations Management
Disc Project development
Disc Real Time
Disc Regenerative Medication
Disc Rehabilitation Technology
Disc Reinforced Concrete
Disc Reliability engineering
Disc Robotic Rehabilitation
Disc Robotics Methods
Disc Rocketry
Disc Seismic Design
Disc Semiconductors
Disc Sensor Technology
Disc Signal Processing
Disc Simulation
Disc Simulator
Disc Social Robots
Disc Sociology of Architecture
Disc Soft Computing and Computational Intelligent
Disc Software Architecture
Disc Software Component
Disc Software Quality
Disc Software design
Disc Space
Disc Spark Ignition
Disc Splitting Method
Disc Stainless Steel
Disc Steel Industry
Disc Stochastic control
Disc Structural Design
Disc Structural Engineering
Disc Structural Steel
Disc Sustainability
Disc Technologies Management
Disc Technology
Disc Telerobotics
Disc Textile Design
Disc Textile Engineering
Disc Textile Industries
Disc Textile Science
Disc Textile Technology
Disc Thermodynamics Methods
Disc Tissue Engineering Development
Disc Ubiquitous Computing
Disc Unmanned-Vehicles
Disc Urban Design
Disc Urban Planner
Disc Web Service
Disc Wireless Sensor
Disc Wireless Technology
 
Recommended Journals
Disc Steel Structures Journals
Disc Optimization Journals
Disc Engineering and Technology Journals
Disc Electrical Engineering Journals
Disc Software Engineering Journals
Disc Architectural Engineering Journals
Disc Automation Journals
Disc Management Journals
Disc Bioengineering Journals
Disc Aerospace Engineering Journals
Disc Instrumentation Engineering Journals
Disc Tissue Engineering Journals
Disc Engineering Journals
Disc Textile Science Journals
Disc Aeronautics Journal
Disc Material Sciences Journal
Disc Mechanical Engineering Journal
Disc Automobile Engineering Journal
  View More»
 
Recommended Conferences
Disc 2nd Industrial Biotechnology Congress
July 28-29, 2016, Berlin, Germany
View More»
 
Article Tools
Disc Export citation
Disc Share/Blog this article
 
Article usage
  Total views: 12098
  [From(publication date):
August-2015 - Jun 28, 2016]
  Breakdown by view type
  HTML page views : 8354
  PDF downloads :3744
 
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

 
OMICS International Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
 
 
OMICS International Conferences 2016-17
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings
 
 

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsinc.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsinc.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsinc.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsinc.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsinc.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsinc.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsinc.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsinc.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsinc.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsinc.com

1-702-714-7001Extn: 9039

Materials Science Journals

Rachle Green

materialsci@omicsinc.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsinc.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsinc.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsinc.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsinc.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsinc.com

1-702-714-7001 Extn: 9042

 
© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version