alexa Interventional Cardiology-Eight Years of Practice: Do Increased Experience and Technological Evolution Lead to Undertaking More Difficult Cases and Higher Patient Doses? | Open Access Journals
ISSN:2167-7964
OMICS Journal of Radiology
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Interventional Cardiology-Eight Years of Practice: Do Increased Experience and Technological Evolution Lead to Undertaking More Difficult Cases and Higher Patient Doses?

Tsapaki V1, Kottou S2, Fotos N1, Nikolopoulos D3* and Patsilinakos S1

1Konstantopoulio General Hospital, Nea Ionia of Athens, Greece

2Medical Physics Laboratory, National and Kapodistrian University of Athens, Athens, Greece

3Piraeus University of Applied Sciences (TEI of Piraeus), Electronic Computer Systems Engineering, Athens, Greece

*Corresponding Author:
Nikolopoulos D
Piraeus University of Applied Sciences (TEI of Piraeus)
Electronic Computer Systems Engineering
Athens, Greece
Tel: +0030-6977-208318
E-mail: dniko@teipir.gr

Received date: December 25, 2016; Accepted date: January 20, 2017; Published date: January 27, 2017

Citation: Tsapaki V, Kottou S, Fotos N, Nikolopoulos D, Patsilinakos S (2017) Interventional Cardiology-Eight Years of Practice: Do Increased Experience and Technological Evolution Lead to Undertaking More Difficult Cases and Higher Patient Doses? OMICS J Radiol 6:248. doi: 10.4172/2167-7964.1000248

Copyright: © 2017 Tsapaki V, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at OMICS Journal of Radiology

Abstract

In our dedicated catheterization laboratory, within the years 2009–2016, 8286 Interventional Cardiology (IC) procedures were performed by two interventional cardiologists with more than 10 years of experience. There were 5469 Coronary Angiographies (CA) and 2817 Percutaneous Coronary Interventions (PCI). The purpose was to analyze annual patient radiation data, investigate trends and compare with national and international literature and Dose Reference Levels (DRL). Patient doses were determined in terms of: kerma-area product PKA, fluoroscopy time FT and reference air-kerma Ka,r. Concerning the number of frames F, in 1.8% of CA cases and in 40% of PCI cases, was higher than Greek DRLs. PKA, in 13% of CA cases and in 31% of PCI cases, was higher than Greek DRLs. In 0.4% of CA cases, the calculated effective dose values were higher than 40 mSv, whereas in 0.9% PCI cases higher than 80 mSv. In 0.2% of CA cases, PSD was higher than 2 Gy and in 0.04% cases higher than 3 Gy. In 13% of PCI cases, PSD was higher than 2 Gy, in 3% higher than 3 Gy and in 0.4% higher than 5 Gy. FT in 19.2% of CA cases and in 32% of PCI cases was higher than Greek DRLs. The radiation dose trends in IC procedures in this hospital, for the last 8 years, suggest that patient radiation doses in CA are less variable through the years compared to PCI. Doses are comparable to the literature and median values are lower than Greek and European DRLs. The practice of the well experienced interventionalists, with the support of evolving technology, shows that simpler procedures, like CA, need slight shorter FT, while the most demanding procedures like PCI, appear to require more frames without increasing in FT or PSD.

Keywords

Interventional Cardiology; Patient dose; Fluoroscopy time; Peak skin dose; Effective dose

Introduction

Several studies have been published, in the field of Interventional Cardiology (IC) procedures, focused on factors that may influence patient radiation exposure [1-10]. Radiation involves a probability of carcinogenic effects (the risk of stochastic effects), the actual probability increasing with the magnitude of the dose. Effective dose (E) is a dose quantity used to roughly estimate the radiogenic risk to an individual (radiation induced cancer is an example). The stochastic risk to an average member of an irradiated population is expressed in terms of sieverts (Sv). Effective dose also enables medical examinations or techniques to be compared in terms of radiation dose.

Radiation also involves detrimental health effect (i.e., skin injury, hair loss, cataracts) for which the severity increases with the dose of radiation. The effect is not observed unless the threshold is exceeded, although the threshold dose is subject to biologic variation [11]. In interventional fluoroscopy procedures, the tissue of concern is the skin, although the lens of the eye is another consideration. The skin at the site where radiation enters the body receives the highest radiation dose of any body tissue. Once the threshold dose is exceeded, the injury becomes progressively more severe with increasing dose, although the true severity of major injuries will only become apparent weeks to months after the procedure. Peak Skin Dose (PSD) is a dose quantity estimating the highest dose at any portion of a patient’s skin during a procedure. Peak skin dose includes contributions from both the primary X-ray beam and from scatter. Peak skin dose is measured in grays (to soft tissue).

The prime objective of radiation protection is not only to minimize the stochastic risks but also to avoid deterministic injuries, by keeping radiation dose as low as reasonably achievable. However, the potential risk of patient radiation damage must be viewed in the context of the general benefit of these procedures and the likelihood of greater trauma associated with heart surgical interventions and perhaps with imminent death if the intervention was not performed. Radiation dose associated with IC procedures is a complex function of a large number of variables including the X-ray tube voltage (kVp) and the product of tube current and exposure time (mAs), the X-ray field size, the number of projections, focus-skin distance as well as practical skill of the operator [12]. Therefore, for optimizing radiation exposure in such procedures, it is essential to measure patient doses in a given set-up of cardiac catheterization laboratory. During IC procedures, both PSD and E need to be determined. However, neither PSD nor E is measured on a routine basis, because the patient dose monitors commonly available to the operator are kerma-area product (PKA), fluoroscopy time (FT) and reference air-kerma (Ka,r), which can be recorded in real time from the control console of the IC equipment. The kerma-area product, PKA, is defined as the integral of dose across the X-ray beam (Gy?cm2) and provides information about patient dose as well as the irradiated skin area. It is a unit historically known as dose-area product (DAP) and currently named kerma-area product (KAP, current notation PKA). PKA provides a good index for estimating stochastic risk but is not directly useful for estimating tissue reactions. It is also a wellaccepted dosimetric parameter for comparison between patient doses during different interventional procedures and is also used to assess E [13]. Air Kerma is the energy extracted from an X-ray beam per unit mass of air in a small irradiated air volume. Air kerma is measured in grays. The reference air-kerma (Ka,r) is the air kerma accumulated at a reference point in space which is located along the central ray of the X-ray beam of the C-arm fluoroscopic system at a distance of 15 cm away from the isocenter toward the X-ray tube focal spot and is provided by the manufacturer. Ka,r was introduced by the International Electrotechnical Commission for standardization purposes and is similar to the Cumulative Dose (CD) used in the past [14]. Reference point air kerma does not include backscatter and is measured in grays (Gy). Reference point air kerma is sometimes referred to as reference dose, or cumulative air kerma. FT is required by the US Food and Drug Administration on all fluoroscopy equipment manufactured. However, it lacks information regarding X-ray beam area, thickness of patient and technique employed [15].

It is desirable to measure the PSD to map skin doses in a given IC set-up. However, this does not reflect the entire dose delivered during the course of the procedure. So, the information about the peak as well as overall dose to the patient during IC procedure can be obtained in terms of PSD as well as other dose metrics such as PKA, FT and Ka,r. Each patient record should contain PKA and/or reference point air kerma (Ka,r).

The number of fluoroscopy-guided procedures in cardiology is increasing over time, a fact that led European countries to investigate closely this field and to gather information in the attempt to define Dose Reference Levels (DRLs) [16-19]. The concept of DRLs was first introduced by the International Commission on Radiological Protection in Publication 60 [20] and further expanded in Publication 73 [21]. The results of patient dose surveys could then be compared with the corresponding DRL value, to discover which IC departments have doses above the reference values. An audit process could then be initiated to determine the underlying cause of higher doses and an action plan developed to improve radiological techniques for dose reduction purposes. In practice, DRL values may be regarded as an optimization tool for the reduction of patient doses. In order to establish DRLs, the third quartile of value from survey data distribution is calculated. The median values of the distribution must also be assessed in order to estimate the variation in values.

The purpose of this study was to evaluate patient radiation doses during coronary angiography (CA) and Percutaneous Coronary Intervention (PCI) procedures in a dedicated catheterization laboratory and to analyze annual patient radiation data performed the last 8 years, investigate trends and compare with national and international literature and DRL values. The dosimetry approach was to determine patient doses in terms of three dose metrics: PKA, FT and Ka,r. The PSD was calculated to take into consideration the likelihood of deterministic skin effects and to isolate procedures involving PSDs higher than 2 Gy. Radiation induced skin effects are deterministic in nature, with a generally accepted threshold dose of 2 Gy [11]. A Belgian study has proposed two PKA action levels for skin dose [13,19,22]. A first PKA action level of 125 Gy?cm2 corresponds to 2 Gy which is the threshold dose for erythema. A PKA value >125 Gy?cm2 would imply an optional radio pathological follow-up depending on the cardiologist’s decision. The second action level of 250 Gy?cm2 corresponds to 3 Gy skin dose and would imply a systematic follow-up. To cover the stochastic risk associated with IC procedures, the effective dose to patients was also evaluated by using proposed factors for conversion of PKA to E [22].

Materials and Methods

The IC procedures were performed by two interventional cardiologists with more than 10 years of experience. Coronary Angiography (CA) and Percutaneous Coronary Intervention (PCI) were included in the sample. The procedures were carried out with a Philips Integris Allura Xper FD20 fully digital monoplane machine with flat detector (FD) (Philips Medical Systems, Best, The Netherlands) in a C-arm configuration.

The radiation dose for each patient was provided by the X-ray system in terms of kerma-area product (PKA) and reference point air kerma (Ka,r). Patient radiation metrics in terms of patients age, kermaarea product (PKA) in Gy?cm2, reference air-kerma (Ka,r) in mGy, fluoroscopy time (FT) in min and total number of frames (F) were analyzed from a pool of data ranging from January 2009 to May 2016.

Quality control was also routinely assessed (including kVp, mA, beam quality [Half-Value Layer, [HVL]) assessment, image quality and radiation dose evaluation) as per the Hellenic Quality Control Angiography machine Protocol set by the Greek Atomic Energy Commission [23]. The PKA meter was calibrated against a digital multimeter (Piranha, RTI Electronics, Molndal, Sweden) with a solidstate detector (CB2-11110201) that has calibration traceable to a standard laboratory. As quoted by the manufacturer, the inaccuracy of the instrument in dose measurements is 2.3%. The calibration was made according to the method summarised in ‘The National Protocol for Patient Dose Measurements in Diagnostic Radiology’ [24], without the table and mattress routinely used.

Conversion factors and equations

Effective dose: Effective dose (E) is estimated by adding the products of the dose in an organ or tissue and the specific weighting factor for that tissue. The weighting factors are values that express the sensitivity of each particular tissue or organ to radiation. Each weighting factor relates to the risk associated with stochastic effects and has specific value for every organ. E is expressed in millisieverts (mSv). In practice, it is very difficult to determine E, since the radiation doses in 12 organs would have to be measured during each cardiological procedure. Therefore, the use of a special conversion factor provides a practical way to estimate E. Modern fluoroscopy machines calculate kerma-area product PKA using generator and collimator settings. PKA does not depend on the distance of the measuring plane from the X-ray source because dose decreases according to the inverse square law and the area of the field increases with the square of the distance. This keeps the PKA value constant at any distance. PKA represents the total energy incident on the patent. PKA is combined with a coefficient depending on the irradiated portion of the body and protocol (irradiated organs) to estimate E. The coefficients range from 0.028 to 0.29 (mSv/Gy?cm2) depending on type of X-ray procedure with regards to the beam geometry and beam quality. They are derived from Monte-Carlo simulations using anthropomorphic digital phantoms. For coronary angiographies, the most recent studies determine E from PKA using a conversion factor of 0.185 mSv/Gy?cm2 for normal adult patient, although the precise factor value depended on whether an additional copper filtration was available during cine mode [22].

Peak skin dose: The estimation of absorbed dose at the surface of the skin by fluoroscopy, to account for deterministic effects, is a difficult task since the examination is conducted with changing regularly the incidence X-ray beam. However, it is possible to have an idea of the dose to the skin using a particular operational quantity, called the cumulative dose. This quantity estimates the dose that would have received the skin if the geometry was kept unchanged throughout the procedure. It may be considered that the cumulative dose indicated by the facility in cardiology in many (but not all cases) overestimates the dose to the skin by a factor of 2-3 since several tube-detector incidences are used that distributes the exposure of the skin. If this operational quantity is not available, the skin dose could be estimated from the PKA [25]. So, kerma-area product PKA correlates with peak skin dose (PSD) as it expresses the total X-ray flux in the beam. Reference point air kerma (Ka,r) correlates better with peak skin dose (PSD) and possible radiation injuries, as this quantity indicates the cumulative air kerma at the reference point during the procedure. PSD has been implemented as a function of the highest radiation dose at any point of the patient’s skin to stand for the likelihood and severity of radiation-induced skin injury to the patient. Ka,r is clinically useful as a real-time safety indicator. It does not take into account the scattered radiation and, therefore, is not the actual dose to the patient’s skin. For this reason, the latest guidelines of the Society of Interventional Radiology (SIR) Safety and Health Committee presented a conversion formula to help operators estimate the PSD from the Ka,r shown on the X-ray machine at the end of interventional procedure [11]:

PSD = 206 + 0.513 × Ka,r (mGy) (for Ka,r >500 mGy) (1)

It should be underlined that these are broad estimations that on the other hand provide an immediate estimate of patient PSD easily and quickly in every day routine practice. Of course, accurate estimation of PSD must account for gantry motion, patient size and patient location relative to the gantry but is not possible without dedicated expensive software purchased additionally to the angiography machine.

Results

Our data resulted in 8286 IC procedures (diagnostic and therapeutic interventions) within the years 2009–2016. There were 5469 (66%) diagnostic Coronary Angiographies (CA) and 2817 (34%) Percutaneous Coronary Interventions (PCI). The range of kVp used in these procedures was 50-125 kVp. Patient demographic data collected included age (63±12, 20-92 years), weight (84±18 kgr) and height (168±15 cm). The patient exposure-related parameters recorded for each IC procedure were number of images F, FT, Ka,r and PKA, as they are presented in Table 1.

Year Procedure # of patients # of frames median # of frames 3rd # of frames max FT median
(min)
FT 3rd (min) FT max (min) Karmedian (mGy) Kar3rd (mGy) Karmax mGy PKA median (Gy?cm2) PKA 3rd (Gy?cm2) PKA max (Gy?cm2)
2009 CA 438 453 639 3326 3.6 7.2 21.3 444 729 3325 27.047 46.537 189.187
PCI 307 1126 1456 3826 12.7 22 63 1771 2598 12217 97.066 144.695 376.401
2010 CA 523 436 570 1197 3.2 6.4 49 414 617 3549 27.918 425.231 276.474
PCI 356 1082 1437 3828 13.6 20.2 58 1711 2539 8773 103.709 154.889 464.954
2011 CA 355 446 555 1782 3.3 6.5 28.3 402 615 2212 28.028 44.310 226.154
PCI 235 1125 1523 3254 13.8 20 68 1532 2295 7290 96.985 138.589 458.816
2012 CA 765 497 607 1633 3.2 5.8 61 409 613 6773 27.764 40.865 639.103
PCI 386 1167 1578 3960 14.3 21.5 99 1619 2489 11310 93.956 142.866 669.506
2013 CA 906 492 619 2777 3.0 5.1 48 436 624 9351 27.626 40.318 460.071
PCI 415 1294 1741 4272 14.8 22.8 91 1942 3044 13505 103.011 155.898 746.534
2014 CA 1024 489 635 1762 2.6 4.5 103 417 588 4958 27.296 39.652 391.367
PCI 430 1242 1644 3026 14 21.7 73 1777 2767 11592 95.336 144.686 667.674
2015 CA 1127 475 648 2295 2 3.8 41 365 565 3432 24.503 38.107 257.393
PCI 541 1143 1545 6535 13 19.9 94 1577 2676 12593 85.759 142.908 818.086
2016 CA 330 514 678 2178 2.4 4.1 33 447 642 3595 30.523 43.699 280.778
PCI 148 1194 1591 4105 13.5 20.8 62 1730 2825 10594 93.830 150.277 452.099
All years CA 5469 475 619 2119 2.9 5.4 48 417 624 4649 27.588 42.001 340.066
PCI 2817 1172 1564 4101 13.7 21 76 1707 2654 10984 96.206 146.851 581.759

Table 1: Median, 3rd quartile and maximum values for number of frames, FT, Ka,r and PKA, along with number of patients, per procedure, per year.

For CA procedures, median values of PKA, Ka,r, FT, and F ranged from 24.5-30.5 Gy?cm2, 365–447 mGy, 2.3-3.6 min and 436-514 respectively. The PKA, Ka,rand FT values reached 639 Gy?cm2 (Figure 1), 6.8 Gy and 103 min respectively. The max number of frames was 3326. On the other hand, for PCI procedures, median values of PKA, Ka,r, FT, and F ranged from 86–104 Gy?cm2, 1532–1942 mGy, 12.7-14.8 min and 1082-1294 respectively. The PKA values reached 818 Gy?cm2 (Figure 2), Ka,r max was 13.5 Gy, FT reached 99 min and the max number of frames was 6535. Looking closer to these results, for CA cases, the concentration of higher PKA values is noted to be almost stable over time. On the other hand, for PCI cases, this concentration seems to be increased for the second half of the total number.

radiology-Red-horizontal-line

Figure 1: PKA values in Gy.cm2 during all CA procedures (5469) from January 2009 to May 2016. Red horizontal line corresponds to 45 Gy.cm2 (European DRL) and black horizontal line corresponds to 55 Gy.cm2 (Greek DRL).

radiology-black-horizontal-line

Figure 2: PKA values in Gy.cm2 during all PCI procedures (2817) from January 2009 to May 2016. Red horizontal line corresponds to 75 Gy.cm2 (European DRL) and black horizontal line corresponds to 130 Gy.cm2 (Greek DRL).

PSD value was calculated by applying equation (1). Median PSD ranged from 393 to 435 and from 992 to 1202 mGy for CA and PCI procedures respectively (Table 2). During CA, PSDmax was found 5003 mGy (Figure 3), whereas during PCI, PSDmax was found 7134 mGy (Figure 4). Looking closer to these results, for CA cases, the concentration of higher PSD values is noted to be almost stable over time. On the other hand, for PCI cases, this concentration seems to be increased for the second half of the total number.

Year Procedure # of patients # of frames mean # of frames
SD
Karmean (mGy) Kar
SD (mGy)
PSD mean (mGy) PSD SD (mGy) PSD median (mGy) PKA mean (Gy?cm2) PKA
SD (Gy?cm2)
E
mean (mSv)
E
SD
(mSv)
E median (mSv)
2009 CA 438 542 290 579 407 503 209 434 35.605 26.366 6.59 4.88 5.00
PCI 307 1202 488 2014 1292 1239 663 1115 111.934 66.582 20.71 12.32 17.96
2010 CA 523 482 179 534 418 480 214 418 36.631 29.673 6.78 5.49 5.16
PCI 356 1217 544 1981 1248 1222 640 1084 118.187 70.393 21.86 13.02 19.19
2011 CA 355 502 237 508 351 467 180 412 36.211 27.226 6.70 5.04 5.19
PCI 235 1252 495 1775 1066 1117 547 992 109.021 66.746 20.17 12.35 17.94
2012 CA 765 533 211 528 490 477 251 416 36.955 40.299 6.84 7.46 5.14
PCI 386 1291 556 1954 1303 1208 668 1037 115.202 75.733 21.31 14.01 17.38
2013 CA 906 541 231 536 496 481 254 430 34.898 32.128 6.46 5.94 5.11
PCI 415 1450 600 2355 1626 1414 834 1202 124.815 92.835 23.09 17.17 19.06
2014 CA 1024 544 229 511 398 468 204 420 34.435 29.103 6.37 5.38 5.05
PCI 430 1351 526 2227 1576 1348 808 1118 119.382 89.061 22.09 16.48 17.64
2015 CA 1127 551 255 466 356 445 182 393 31.662 24.488 5.86 4.53 4.53
PCI 541 1299 654 2140 1677 1304 860 1015 116.334 93.965 21.52 17.38 15.87
2016 CA 330 582 271 542 408 484 209 435 37.881 32.851 7.01 6.08 5.65
PCI 148 1320 579 2209 1530 1339 785 1093 117.969 76.582 21.82 14.17 17.36
All years CA 5469 535 238 525 416 475 213 416 35.535 30.267 6.57 5.60 5.03
PCI 2817 1298 555 2082 1415 1274 726 1082 116.605 78.987 21.6 14.6 17.75

Table 2: Mean values and SD of number of frames, Kar, PSD, PKA and E effective and median values PSD and E, along with number of patients, per procedure, per year.

radiology-PSD-values-mGy

Figure 3: PSD values in mGy during all CA procedures (5469) from January 2009 to May 2016. The horizontal red line corresponds to the 2 Gy threshold.

radiology-during-PCI-procedures

Figure 4: PSD values in mGy during all PCI procedures (2817) from January 2009 to May 2016. The horizontal red line corresponds to the 2 Gy threshold.

The effective dose E was also calculated from the corresponding value of PKA by using the factor 0.185 mSv/Gy?cm2, for converting PKA to E [17,21]. Median E effective ranged from 4.5 to 5.7 mSv and from 15.9 to 19.1 mSv for CA and PCI procedures respectively (Table 2). During CA, Emax was found 118 mSv (Figure 5), whereas during PCI, Emax was found 151 mSv (Figure 6). In Table 2 mean values and SD of F, Ka,r, PSD, PKA and E, per year, per procedure, are also presented for comparison reasons (Discussion section).

radiology-Effective-dose-values

Figure 5: Effective dose values in mSv during all CA procedures (5469) from January 2009 to May 2016.

radiology-dose-values-mSv

Figure 6: Effective dose values in mSv during all PCI procedures (2817) from January 2009 to May 2016.

Concerning the number of frames F, for 99 CA cases (1.8%) F value was higher than 1250 (Greek DRL) (Table 3 and Figure 7). Among 2817 PCI cases, 1128 (40%) F value was higher than 1300 (Greek DRL), for 302 cases (11%) F value was higher than 2000 and for 37 cases (1%) F value was higher than 3000 (Table 3 and Figure 7).

  2009 Percentages (%)
2010 2011 2012 2013 2014 2015 2016
Frames_CA>1250 2.7 0 2 1.4 1.4 2 3 3
Frames_PCI>1300 34.5 33 37 39 50 47 37 42
Frames_PCI>2000 4.9 8.7 8 10 15 12 12 14
Frames_PCI>3000 0.7 0.8 0.4 0.8 2 0.5 3 0.7
PKA_CA (Gy.cm2)>55 17.5 17 0 15 13 11 11 13
PKA_CA (Gy.cm2)>100 2.7 4 0 4 3.4 3 2 4.6
PKA_PCI (Gy.cm2)>130 30 36 30 30 35 32 28 31
PKA_PCI (Gy.cm2)>200 9 12.6 8.5 12 13 11 15 13
PKA_PCI (Gy.cm2)>300 2.3 2.2 1.3 3 4 5 5 2
PSD_CA (Gy)>2 0 0.2 0.4 0.4 0.4 0.3 0 0.3
PSD_PCI (Gy)>2 8.8 11 6 10 18 14 15 13.5
PSD_PCI (Gy)>3 2.3 1.7 0.9 2 4 5 5 4.7
FTime_CA (min)>6 22 27 27 24 23 16.5 12 14
FTime_CA (min)>10 10 12 14 10.7 10.6 7 5 5.5
FTime_PCI (min)>18 23 29 31 37 38 34 30 32
FTime_PCI (min)>30 8.5 9 8.5 12 14 13 12 11
FTime_PCI (min)>40 2.3 2.8 2.6 6 6 7 6 3

Table 3: Percentages (%) of higher values for (number of) frames, PKA, PSD and fluoroscopy time FT per year, per procedure type. Bold numbers correspond to the Greek DRLs.

radiology-Percentages-higher-values

Figure 7: Percentages (%) of higher values for (number of) frames, PKA, PSD and fluoroscopy time FT per year, per procedure type (CA or PCI).

Concerning PKA, for 719 CA cases (13%) PKA value was higher than 55 Gy?cm2 (Greek DRL) and for 15 cases (0.3%) PKA value was higher than 250 Gy?cm2 (Table 3 and Figure 7). Among 2817 PCI cases, 885 (31%) PKA value was higher than 130 Gy?cm2 (Greek DRL) and for 172 cases (6%) PKA value was higher than 250 Gy?cm2 (Table 3 and Figure 7).

In accordance with the PKA values, the same shape is followed by the effective dose E values, as can be seen in Figures 5 and 6. It is calculated that 24 CA cases (0.4%) received more than 40 mSv, whereas 25 PCI cases (0.9%) received more than 80 mSv.

Among 5469 CA cases, 11 (0.2%) received PSD higher than 2 Gy and 2 cases (0.04%) received PSD higher than 3 Gy (Table 3 and Figure 7). Among 2817 PCI cases, 357 (13%) received PSD higher than 2 Gy, 97 cases (3%) received PSD higher than 3 Gy and 12 cases (0.4%) received PSD higher than 5 Gy (Table 3 and Figure 7).

Concerning the time FT, for 1049 CA cases (19.2%) FT value was higher than 6 min (Greek DRL) and for 471 CA cases (8.6%) FT value was higher than 10 min (Table 3 and Figure 7). Among 2817 PCI cases, 899 (32%) FT value was higher than 18 min (Greek DRL), for 320 cases (11%) FT value was higher than 30 min and for 137 cases (5%) FT value was higher than 40 min (Table 3 and Figure 7).

Discussion

The mean and 3rdquartile PKA values recorded during both CA and PCI procedures in the present study were compared with those published in the literature (Figures 8 and 9). Mean values for patient doses are not essential, as they do not represent the dominant daily practice in every laboratory. The IC procedures present wide variation in patient dose resulting from complexity. Median and 3rd quartile values have been established as they are identified to be more representative, the radiation dose data being not normally distributed. It can be seen however that in both figures, current study’s CA PKA value is lower than half of the presented laboratories, whereas current study’s PCI PKA value is the 4th(13 centers) and 3rd(12 centers) higher respectively. It is generally accepted that the large variability in the recorded values of PKA, especially during PCI procedures, is mainly attributed to different levels of procedure complexity, patient thickness and skill of the cardiologist.

radiology-CA-PCI-procedures

Figure 8: Mean PKA values in Gy.cm2 for CA and PCI procedures.

radiology-PCI-procedures

Figure 9: 3rd quartile PKA values in Gy.cm2 for CA and PCI procedures.

Concerning mean effective dose, for CA procedures current study has the 4thhigher value (8 centers) and for PCI procedures it has the 2nd higher value (Figure 10). It has to be highlighted however that slight differences were noticed between the values of conversion factor calculated by Uniyal et al. [4] and Betsou et al., which were 0.183 mSv/ Gy?cm2. Nevertheless, although E is derived from PKA by using a single multiplicative factor, it provides a convenient way to judge patient doses [26-35].

radiology-Mean-Effective-dose

Figure 10: Mean Effective dose values in mSv for CA and PCI procedures.

Concerning mean PSD value, for CA procedures current study has the 2nd higher value (7 centers) and for PCI procedures it has the 3rd higher value (Figure 11). Although the mean PSD (median values are even lower) for CA and PCI procedures in this study were well below the deterministic threshold of skin injury, 13%, 3% and 0.4% of patients received PSDs during PCI exceeding 2, 3 and 5 Gy, respectively (Table 3 and Figure 7). Dose Reference Levels are the guide to what is achievable with current good practice, rather than optimum performance, and are dose neither limits nor thresholds that define competent performance of the operator or the equipment. A mean dose for a procedure that is less than the RL does not guarantee that the procedure is being performed optimally. On the other hand, even with optimal technique, it is not always possible to keep peak skin dose below the threshold for skin effects. This does not necessarily indicate poor operator technique. It is not necessarily a contraindication to performing or continuing a procedure. However, no deterministic injury was reported from any patient during these eight years of practice in this unit. An event that can be explained by the fact that interventionists are well trained and have always in mind to move the X-ray source as often as possible, so as none patient small skin region to receive large portion of the incident radiation. Nevertheless, the operator is always notified when a significant radiation dose has been administered. The patients are also instructed to notify the operator if any signs or symptoms of a possible radiogenic deterministic effect are observed. The operator writes an appropriate note in the patient’s medical record. Follow-up of patients who have received a significant radiation dose applies at 10–14 days and 1 month after the procedure, according to the guidelines [11].

radiology-Mean-PSD-values

Figure 11: Mean PSD values in mGy for CA and PCI procedures.

The everyday practice of the two well-experienced interventionists, with the help of evolving technology, shows that simpler procedures, like CA, need slight shorter fluoroscopy time, while the most demanding procedures like PCI, appear to require more frames without increasing in fluoroscopy time or patient’s skin dose.

Conclusion

The data of this study resulted in 8286 IC procedures within the years 2009–2016. There were 5469 (66%) Coronary Angiographies (CA) and 2817 (34%) Percutaneous Coronary Interventions (PCI). Concerning the number of frames F, for 99 CA cases (1.8%) F value was higher than 1250 (Greek DRL). Among PCI cases, 1128 (40%) F value was higher than 1300 (Greek DRL), for 302 cases (11%) F value was higher than 2000 and for 37 cases (1%) F value was higher than 3000.

Concerning PKA, for 719 CA cases (13%) PKA value was higher than 55 Gy?cm2 (Greek DRL) and for 15 cases (0.3%) PKA value was higher than 250 Gy?cm2. Among PCI cases, 885 (31%) PKA value was higher than 130 Gy?cm2 (Greek DRL) and for 172 cases (6%) PKA value was higher than 250 Gy?cm2. The calculated effective dose values showed that in 24 CA cases (0.4%) patients received more than 40 mSv, whereas in 25 PCI cases (0.9%) they received more than 80 mSv. Among the CA cases, 11 (0.2%) received PSD higher than 2 Gy and 2 cases (0.04%) received PSD higher than 3 Gy. Among the PCI cases, 357 (13%) received PSD higher than 2 Gy, 97 cases (3%) received PSD higher than 3 Gy and 12 cases (0.4%) received PSD higher than 5 Gy. Concerning the fluoroscopy time (FT), for 1049 CA cases (19.2%) FT value was higher than 6 min (Greek DRL) and for 471 CA cases (8.6%) FT value was higher than 10 min. Among the PCI cases, 899 (32%) FT value was higher than 18 min (Greek DRL), for 320 cases (11%) FT value was higher than 30 min and for 137 cases (5%) FT value was higher than 40 min. The radiation dose trends in IC procedures in the hospital of this study for the last 8 years suggest that patient radiation doses in CA are less variable through the years compared to PCI. Doses are comparable to the literature and median values are lower that Greek and European DRLs. Even with optimal technique, it is not always possible to keep patient radiation dose below the threshold for skin effects. However, no deterministic injury was reported from any patient during these eight years of practice in this unit, while the appropriate actions and the recommended follow-up of patients who have received a significant radiation dose were strictly followed.

The daily practice of two well-experienced interventionists, with the help of evolving technology, shows that simpler procedures, like CA, need slight shorter fluoroscopy time, while the most demanding procedures like PCI, and appear to require more frames without increasing in fluoroscopy time or patient’s skin dose.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

Article Usage

  • Total views: 356
  • [From(publication date):
    February-2017 - Aug 19, 2017]
  • Breakdown by view type
  • HTML page views : 323
  • PDF downloads :33
 
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version